Relations entre résistance au vent, descripteurs du peuplement et sylviculture

Francis Colin, Philippe Riou-Nivert

UMR Lerfob INRA-AgroParisTech

IDF/CNPPF, Paris

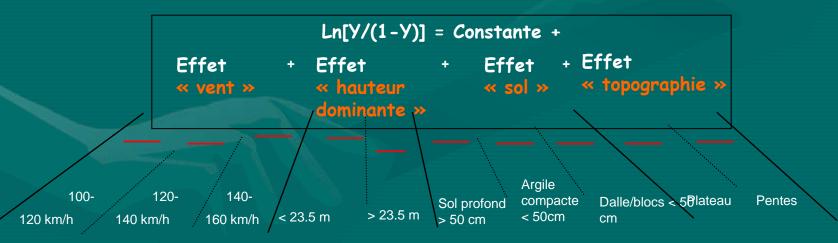
3 approches

- <u>Empirique</u>, liée à l'observation, à « dire d'expert » : propriétaire, gestionnaire, ingénieur vulgarisateur (Ex: Becquey, 2001)
- <u>Phénoménologique (statistique, empirique)</u>, liée à l'ajustement sur les dégâts, d'un modèle statistique comprenant les facteurs et variables disponibles
- Mécaniste, avec 3 composantes :
 - Aérodynamique échelles paysage et peuplement
 - Transfert d'une énergie cinétique à l'arbre
 - Résistance biomécanique de l'arbre

Pour pouvoir comprendre et réagir efficacement, aucune approche n'est à négliger.

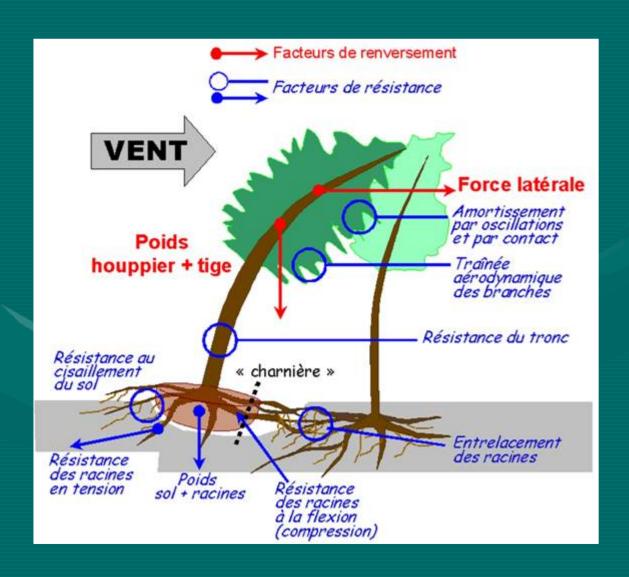
Elles sont complémentaires ; aucune à elle seule ne parvient à tout expliquer.

Mais globalement, on doit tendre vers moins d' « empirisme ».


Démarche phénoménologique

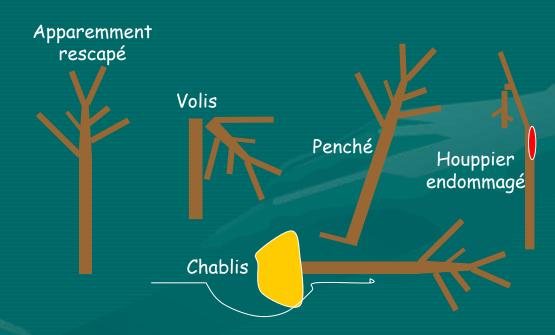
A la base, des proportions de dégâts :

	endommagé	indemne
exposé	a	Ь
non-exposé	С	d


```
Odds ratio = (a/b)/(c/d)
Risque relatif = (a/[a+b])/([c/c+d])
```

Le modèle logistique : exemple du Hêtre (Bock et al., 2002, 2005)

Y = taux de dégâts en nombre de tiges = nombre de tiges endommagées / nombre de tiges total


Organisation des facteurs

Facteurs:

- -Très liés (A déjà « contenu » dans B);
- additifs (A+B), interagissant (A + B + A*B);
- Confondants;
- En série ... $(A \rightarrow B \rightarrow C)$

Types de dégâts « arbre »

Taux de dégâts :

- -Différentes regroupements des dégâts
- -N endommagés / N total
- G endommagée / G total
- couvert endommagé / surface placette

Jeux de données

- Données IFN large gamme de situations, reflètent sylviculture courante, mélanges présents ; problèmes de reconstitution des hauteurs
 - Piton (2001)
 - Renaud et Hervé (2005)
 - Renaud (2005)
- Données issues de parcelles de gestion ; pas de mélanges ; sylvicultures régionales
 - Hêtre N-E : Bock et al., 2002, 2005
 - Angelier et François, 2004
 - ONF STIR Massif central 2002 (Sapin Massif central)
 - Genay et al., 2005 (Douglas Massif central)
- Données issues de parcelles expérimentales (large gamme de sylvicultures)
 - Najar et al., 2002 (Pin maritime, Aquitaine)
 - Rosa (2004)
- Données issues de réseaux de surveillance
 - DSF (Renaud 2002)
 - Etudes réalisées par l'IDF, l'ONF, l'INRA, le FCBA avec le soutien du GIPECOFOR
 - · N'ont pas fait l'objet de publications de rang A
 - → pas de relecture par des spécialistes
 - Rapports internes, RDVT, articles FE, Forêt Wallonne...

Stratégies de gestion du risque

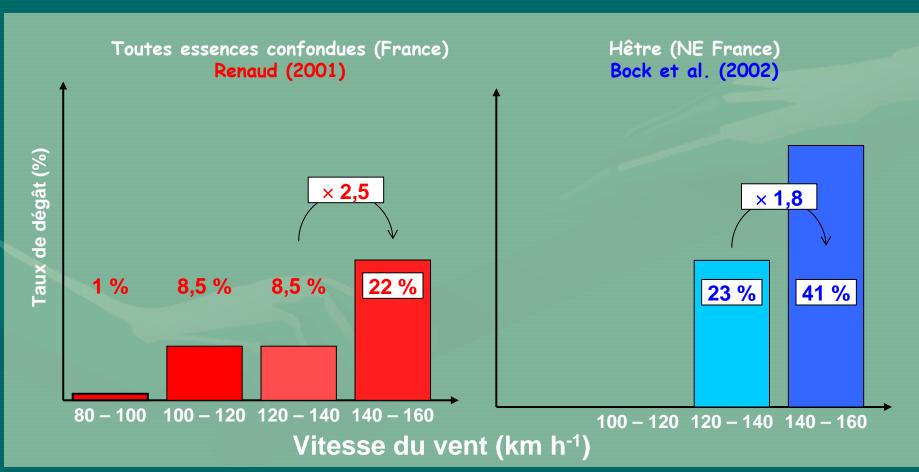
Sur l'aléa (les vents forts) pas d'action possible

Sur les enjeux (la production forestière), 3 stratégies :

Acceptation: on « ne change rien »; par chance ça pourra passer

Mitigation : on fait en sorte que l'enjeu soit moins vulnérable

Evitement : on place un enjeu moins vulnérable, on met l'enjeu à un autre endroit


Et il faut tenir compte des évolutions futures

Les facteurs qui interviennent

et les mesures sylvicoles

Effet du vent

Vitesse instantanée (des rafales ou non, laps de temps 0.5 à qq s) moyenne (sur plus de 10 mn)

Conséquences gestion

- · Très grande variabilité de l'aléa
- MAIS régions régulièrement parcourues
- → historique et calcul temps de retour
- Inscrire le risque « tempête » dans l'aménagement
- · Décider de la stratégie :
 - Évitement (on met les grands enjeux ailleurs)
 - Acceptation (Pin maritime, peuplier)
 - Mitigation (gestion en tenant compte du risque, promotion de productions plus rapides)

Hauteur

```
"Synthétise" plusieurs effets :

fertilité,
âge,
faiblesses mécaniques croissantes avec l'âge (attaques pathogènes),
le caractère régulier/irrégulier,
la "prise" au vent,
les possibilités d'oscillation des houppiers
```

Ho et H_{seuil}

 Sapin Epicéa [Piton, 2002, Haut Rhin, 1029 parcelles

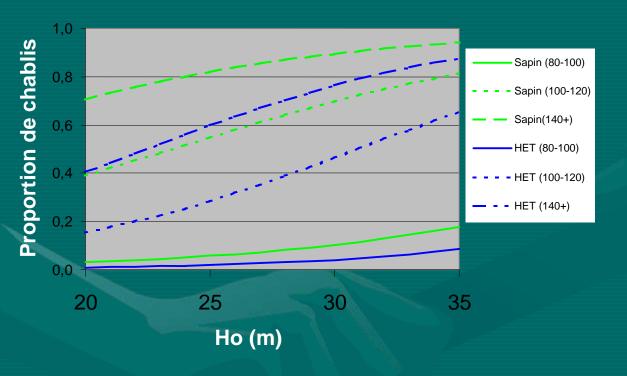
> <12m : peuplements très stables 12-25 m : instable, éclaircie récente déstabilise

>25 m : instable, éclairci ou non

- Sapin Franche-Comté et Massif Central 415 parcelles [Angelier & François, 2004)> 27,5 m dégâts > 20% → instabilité, stratégie d'acceptation du risque
- Douglas Massif Central 69 parcelles [Angelier & François, 2004] 28 m dégâts forts
- P. maritime [Piton, 2002, Gironde+Landes,2195 placettes]: pas de propositions

• Chêne : [Piton, 2002, Haut Rhin] PAS D'EFFET de Ho mis en évidence

[Piton, 2002, Yonne, **720 placettes**] [Ho significatif] > 30 m si vent fort : risques


 Hêtre [Piton, 2002, Haut Rhin, 192 placettes IFN] (Ho significatif):

<22m : peuplements stables 22-35 m : certaine instabilité >35 m : condamné en cas fort coup de vent

Hêtre [Bock et al. 2002 **145 parcelles Lorraine**] : > 23,5m → instable

Ho et vent

Exemple : Renaud J.P, 2002. réseau européen santé des forêts 45 placettes Hêtre, 22 placettes Sapin

Attention : les situations rencontrées et bien quantifiées jusqu'à présent sont très particulières (sols très humides, rafales probablement très fortes)

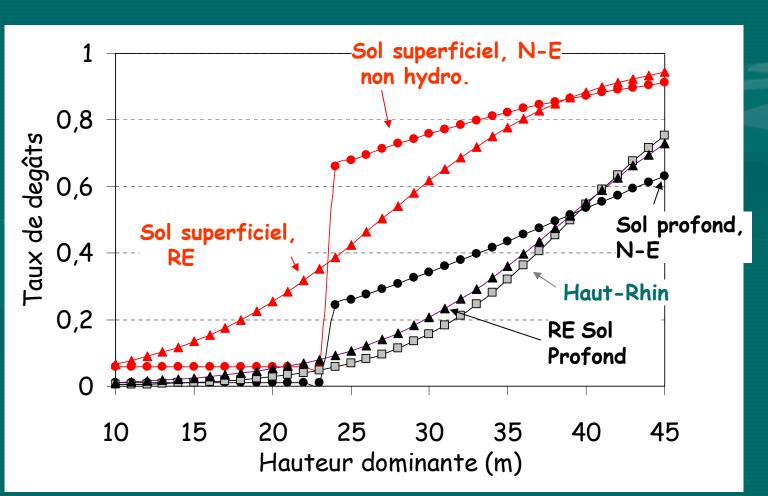
→on pourrait être trop pessimiste !

Accentuation de l'effet Ho quand VMI augmente puis 'tassement'

Sols forestiers

On ne choisit pas ses …sols forestiers
 [Badeau et al, 1999]: davantage de sols bruns, sols hydromorphes et sols podzolisés
 → sols contraignants

Sols hydromorphes


⇒stratégie d'évitement (pas d'efforts sylvicoles) ou au contraire mitigation (drainage, billons) (cf Lévy & Lefèvre 2001) mais Problème des coûts

- Les essences forestières s'y acclimatent plus ou moins
 adéquation sol espèce
- Les sols ne sont déjà pas bons, il ne faut pas les dégrader (mécanisation à surveiller)
 préventif

Attention en décembre 1999 sols détrempés → généralisation difficile

Sol et Ho

Ex: Hêtre Vinckler &, 2004

Bonne cohérence des modèles :

- · Modèles avec seuil de Ho (Bock&, 2002)
- · Modèles sans seuil (Piton, 2002 ; Renaud, 2001)

Conséquences gestion

- Obtenir rapidement les diamètres commercialisables \rightarrow éclaircir rapidement
- Sur sols superficiels ne pas chercher longues grumes (dans le sens Lgrume=f(fertilité);
 Lgrume= ¹/₄ Ho finale)
- Mais éclaircies → houppiers longs
- → Introduire l'élagage (voir coûts)

Topographie et exposition

Attention : les expositions, favorables ou non, dépendent de la direction du vent de la tempête. En 1999 : Ouest-Sud Ouest dans la majorité des régions.

- Exposition Est significativement favorable,
 Ouest aggravante
- · Hêtre (Bock 2002) dégâts plus forts sur plateau que sur haut de pente

Conséquence gestion

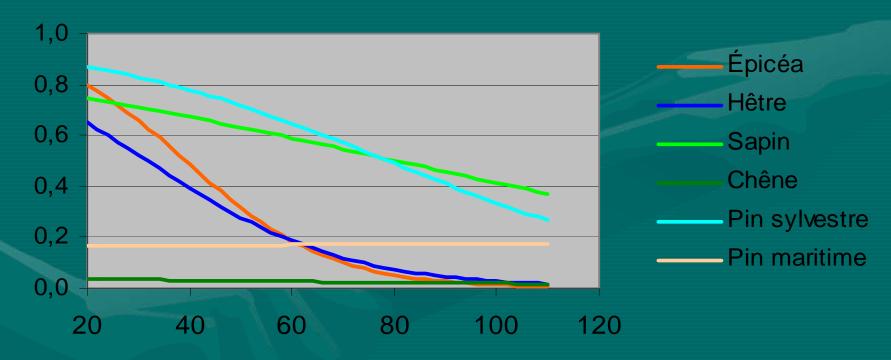
- Des situations exposées sont connues
- Les identifier
- · Les intégrer dans les aménagements

Un classement des essences

(Renaud et Hervé, 2005, Colin et al., 2009; Renaud, 2001)

- Tremble <
- · · · · Epicéa · Douglas · Pin sylvestre
- « Merisier « Hêtre « Bouleau
- Sapin < Grandis
- Sessile < Pédonculé
- < Charme < Frêne

Peuplier, pin maritime replacés ultérieurement


Pin maritime au même niveau qu'Epicéa, Douglas, P. sylvestre (Riou-Nivert, 2005)

Conséquences gestion

- · Charme, Frêne à davantage valoriser
- Merisier à produire rapidement → ouvrir
- · Quand cela est économiquement possible, introduire des essences résistantes → favoriser les mélanges
- Quelle stratégie pour les vulnérables ?
 - Acceptation : Ex Peuplier, Douglas, Epicéa, Pin maritime ?
 - Evitement : ne plus planter l'Epicéa hors de son aire ? Pin maritime ?
 - Mitigation : être exigeant par rapport à l'application de sylvicultures appropriées
- Tenir compte de l'adéquation station essence

Sol et espèce

P(dégâts)=f(Profond.)

Simulation Ho = 30 m, Vent > 120 km/h

Essence et santé

Epicéa: Fomes (Heterobasidion annosum) → pourritures de tronc → volis

Pin maritime: Fomes (Heterobasidion annosum), Armillaire → pourritures de racines

Peupliers: Fusarium

Chênes sessile, pédonculé: Collybie (Collybia fusipes)

Cf dépérissements pédonculés à Tronçais (Guillaumin et al, 1983);

Marçais & Caël, 2002

Classes d'infection par la Collybie	Arbres non endommagés	Arbres faiblement endommagés	Arbres fortement endommagés
Chablis % (nb d'arbres)	10% (sur 135)	16% (sur 147)	30% (sur 86)
Risques relatifs	1	1,5	2,9

Conséquences gestion

- Respecter scrupuleusement l'autécologie
- Utilisation de variétés résistantes

Eclaircies des résineux

- Plus elles sont récentes et fortes, moins le peuplement est acclimaté
- Grande variété des manières de les quantifier : intensité, prélèvement dans les 5 ans, délai depuis, nb d'éclaircies passées, type (par le haut/le bas , systématique/sélective)

Piton, 2001:

Effet majeur du taux de prélèvement Vprélevé/Vavant dans les 5 ans avant tempête Pin maritime, Sapin, Epicéa, Pin sylvestre

ONF : Douglas : effet éclaircie si temps = 1 an

Najar et al., 2002 : Pin maritime : moins de 2 ans

Eclaircies des feuillus

Pas d'effet : Hêtre, Chêne

Exception : Chêne :

Yonne [720 placettes IFN] (- fort que pour résineux)

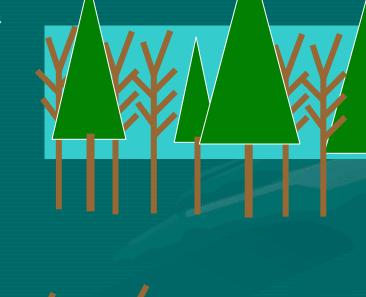
Conséquences pour la gestion

- Un peuplement éclairci est fragilisé
- Etre très prudent avec les résineux
- Eclaircir quand le peuplement n'a pas atteint les hauteurs critiques
- Les éclaircies doivent être nombreuses et fortes avant Hseuil (\rightarrow acclimatation des arbres)
- · Au-delà de Hseuil, pas d'éclaircies

ou éclaircies espacées et fortes (pour ne pas intervenir souvent)

Effet du mélange

(Von Lüpke et Spellmann 1995)


A types de station équivalents

auteurs	région	Type de sol	Épicéa pur	Hêtre (10-49%) dans épicéa	Epicéa (10- 49%) dans hêtre	Hêtre pur
Heupel et Block 1991	Hunsrück 2 600 ha	* Brun / brun pseudogley * Pseudogley / brun	19 - 12 % 42-19 %	<u>-</u>	4-1%	<1%
	Rheinland- Palatinat	pseudogley * pseudogley	42-19 % 15 - 57 %		3-2 % 10-8 %	-
König et al. 1995	Eichstätt Bavière 2 Forstämter (9 800 ha)	Profond Iimoneux	<u>68 %</u>	70 %	65-2	25 %
Wangler, 1974	Bade- Wurtemberg	* Pseudogley (moraine) * Sol bien drainé de plateau	14 % 7 %	13 - 9 % 0 %	-	0 % 0 %

Fertilité et statut social

(Ex. Hêtre - Epicéa, v Lüpke et Spellmann, 1995)

Forte réserve hydrique Pauvre en bases Climats froids

Réserve hydrique normale Sols riches Climats Sud Allemagne, Suisse

« Anciens » peuplements de pin maritime : vers un panel diversifié de propositions ; transformation industrielle à adapter

Stratégie	Acceptation	Mitigation	Evitement
Facteurs			
Hauteur	-	- Récolter plus tôt (moins haut) → produits moins gros - Amélioration génétique : récolter plus vite (aussi haut) → risques plus faibles sur une révolution	Changement de production: pour une moins haute: TCR et TTCR Pour une plus rapide: Eucalyptus, P. taeda, Peuplier
Sol et sol*hauteur	Le pin maritime est bien adapté	-Drainage raisonnable - travail du sol, - désherbage superficiel	- Éviter les sols très hydromorphes de landes humides
Eclaircie		-Ouvrir 3 fois / 5 fois - ouvrir plus fortement avant H seuil (= 20 m)	
Densités		Planter à densité quasi définitive + élagage régulier ??	
Essences	Pin maritime bien adapté	Renforcer l'ancrage par P. taeda, P. laricio, chênes ?	Remplacer Pin maritime / Pin teada ; Eucalyptus (ancrage ?)
Topographie			Topex, cartes de risques

Conclusions

Les études phénoménologiques évoquées dans cette présentation

- ont vu leurs résultats peu diffusés
- sont propres à l'événement de décembre 1999 (sols détrempés)
- permettent de quantifier l'effet des facteurs les plus influents
- et de démêler les relations entre facteurs
- doivent être systématiquement poursuivies
- en harmonie avec les études mécanistes (nouvelles variables, échelles)
- en tenant compte des « dires d'expert ».

Merci