Carrefours de l'innovation agronomique 2010

Améliorer l'efficience énergétique et réduire les émissions de Gaz à Effet de Serre.

Thiébeau P., Lô-Pelzer E., Klumpp K., Corson M., Hénault C., Bloor J., de Chezelles E., Soussana J.F., Lett J.M., Jeuffroy M.H.

Jeudi 9 décembre 2010

ALIMENTATION
AGRICULTURE
ENVIRONNEMENT

Les Gaz à Effet de Serre (GES) en Agriculture

Qu'est-ce qu'un Gaz à Effet de Serre ?

Gaz qui, dans l'atmosphère d'une planète, absorbe les radiations solaires infrarouges et les redirige vers la surface, contribuant ainsi à augmenter la température de surface de cette planète.

Tous les gaz n'ont pas le même « pouvoir de réchauffement global » (PRG), que l'on établit à différentes échelles de temps (20 ans, 50 ans, 100 ans) :

GES	PRG (100 ans)
Carbone (CO ₂)	1
Méthane (CH ₄)	25
Protoxyde d'azote (N ₂ O)	298

(IPCC, 2007)

Les Gaz à Effet de Serre (GES) en Agriculture

Dans l'atmosphère terrestre, les principaux GES sont :

```
le dioxyde de carbone (CO<sub>2</sub>),
le méthane (CH<sub>4</sub>),
l'oxyde nitreux (N<sub>2</sub>O),
la vapeur d'eau (H<sub>2</sub>O)
les chlorofluorocarbures (CFC).
```


Les Gaz à Effet de Serre (GES) en Agriculture

Sont nombreux : CO₂, N₂O, CH₄, ...

N₂O: produit naturellement par les écosystèmes

produit par les activités humaines (agricoles & industrielles)

+18% révolution industrielle

Emissions de N_2O : 16% de l'effet de serre anthropique

Emissions de N₂O: 16% de l'effet de serre anthropique

Agriculture : Responsable de 72% de ces émissions

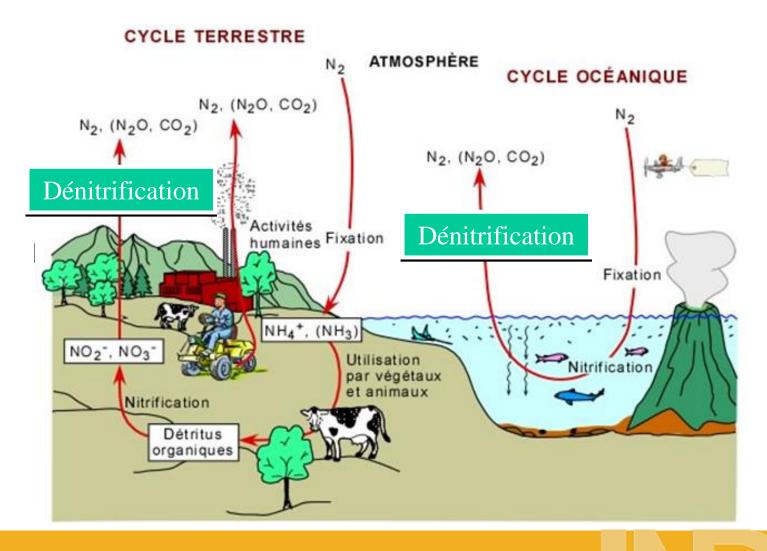
Emissions de N₂O: 16% de l'effet de serre anthropique

Agriculture : Responsable de 72% de ces émissions

Principal secteur économique émetteur

Emissions de N₂O: 16% de l'effet de serre anthropique

Agriculture : Responsable de 72% de ces émissions


Principal secteur économique émetteur

MAITRISER LES EMISSIONS

Sources d'émissions de N₂O:

Intensité des flux sol/atmosphère :

paramètres du sol

- → Température
- → Taux de saturation en eau
- → Teneurs en NO₃ et NH₄ (fertilisation)
- → pH : effets complexes

Effet des légumineuses

IPCC 1997 : N symbiotique fixé = Engrais N

Effet des légumineuses

IPCC 1997 : N symbiotique fixé = Engrais N

Travaux de Rochette et al (2004); Rochette et Janzen (2005)

Effet des légumineuses

IPCC 1997 : N symbiotique fixé = Engrais N

Travaux de Rochette et al (2004); Rochette et Janzen (2005)

IPCC 2006 : N sympletique fixé = pas d'émission ?

Effet des légumineuses

Résidus riches en azote, après récolte?

Mesures de N₂O en systèmes de grande culture et prairial

Mesures en système de grande culture : Introduction d'un pois dans une rotation colza-blé

Matériel et méthode (Projet CASDAR 7-175):

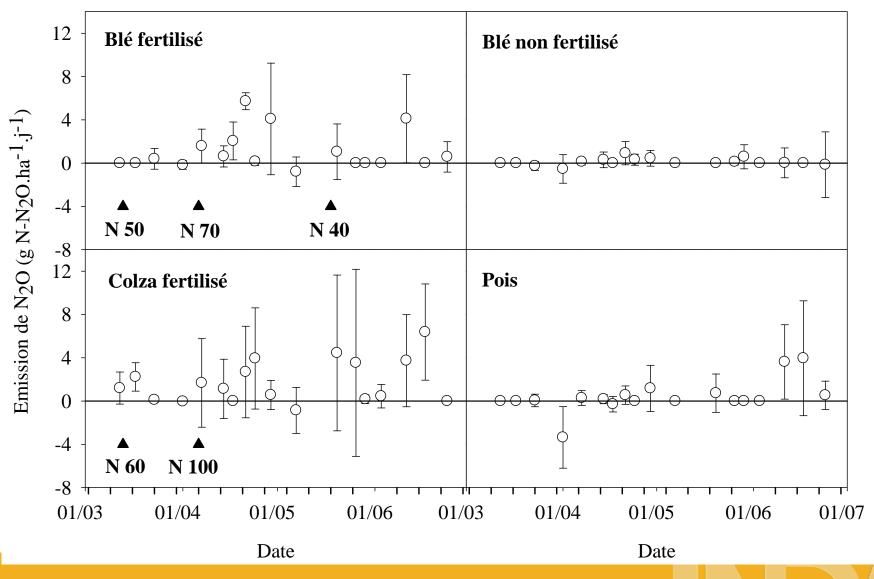
Inra de Grignon, Sol limono-argileux, 2007 à 2010.

Comparaison : Pois // Blé et Colza fertilisés ou non

Puis mesures d'automne sur blé et colza précédent pois

Mesures: 2 chambres x 3 blocs. 4 mesures/j esp.45 min.

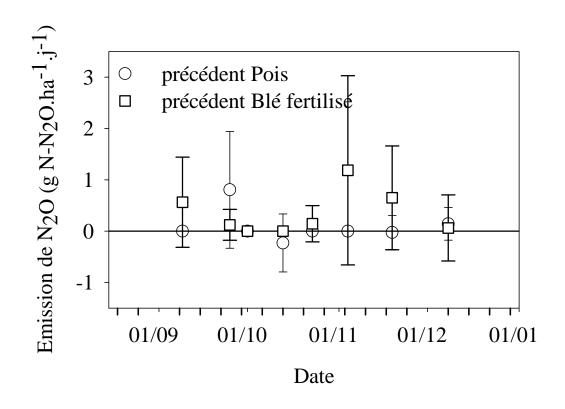
Matériel et méthode :



Légumineuses et agriculture durable

A LIMENTATION
AGRICULTURE
ENVIRONNEMENT

Légumineuses et agriculture durable


A LIMENTATION
AGRICULTURE
ENVIRONNEMENT

Résultats: mesures d'automne sur colza

Résultats: mesures d'automne sur colza

Mesures en système prairial : Présence différentiée de trèfle blanc en prairie

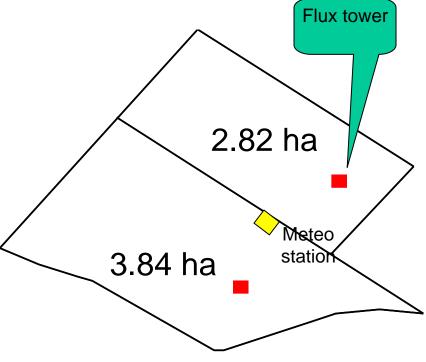
Matériel et méthode (Klumpp et al., 2010) :

Inra de Laqueuille, Sol limono-sablo-argileux, 2008.

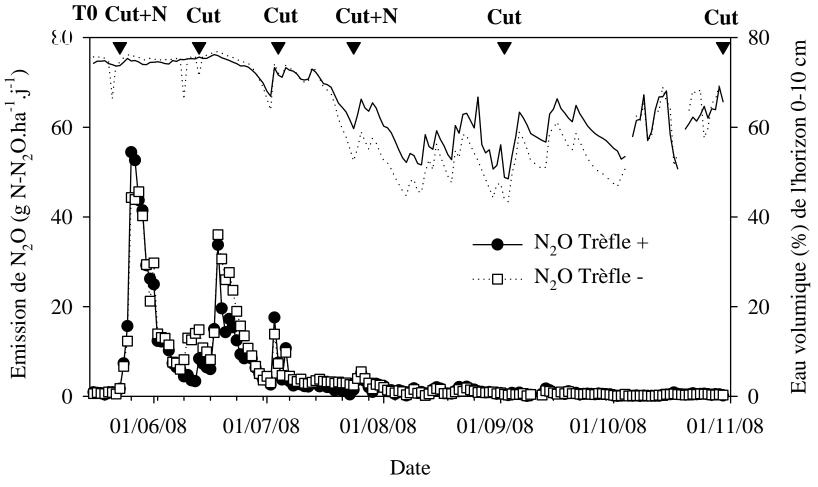
Comparaison: TC du trèfle blanc 35±4% ou 19±4%, représentant respectivement 6,6 et 3,2% MS

Mesures : 4 chambres automatiques/modalité 30 min. de mesure/4 heures

Apports N identiques: 57 et 100 kg/ha



Site Experimental: Laqueuille, Auvergne Alt. 1050m


Légumineuses et agriculture durable

A LIMENTATION
AGRICULTURE
ENVIRONNEMENT

Résultats:

Légumineuses et agriculture durable

A LIMENTATION
AGRICULTURE
ENVIRONNEMENT

Mesures sur luzerne pure :

Travaux en cours

sur la ferme expérimentale d'AgroParisTech (Grignon) sur le site INRA d'Estrées-Mons (Somme)

Résultats

Tendances identiques à celles mesurées sur pois / trèfle :

- → Peu d'émission en cours de culture
- → Quelques pics notés après chaque coupe

Confirme les travaux de Rochette et al (2004) - Luzerne

Impact sur les bilans énergétique et de GES

Impact sur le bilan énergétique

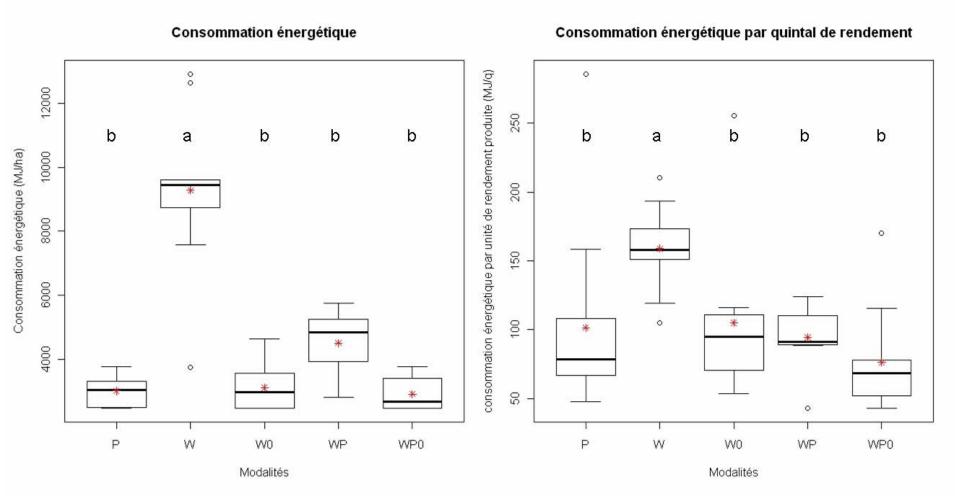
Associations céréales-légumineuses (Baranger et al., 2008)

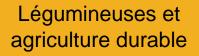
Matériel et méthode :

Modalités: Pois pur (P)

Blé pur +N (W) Blé pur 0N (W0)

Blé+Pois +N (WP) Blé+Pois 0N (WP0)


Fertilisation N selon méthode du bilan


Objectif de rendement blé : / 2 pour les associations

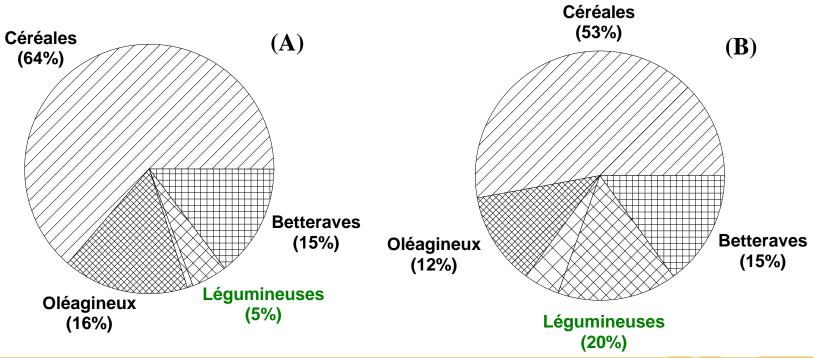
Coût énergétique : méth. INDIGO (Bockstaller et al., 2009)

Résultats

ALIMENTATION
AGRICULTURE
ENVIRONNEMENT

Matériel et méthode :

Bilan par Analyse du Cycle de Vie (ACV)


- = approche pour quantifier les impacts de systèmes agricoles (Haas *et al.*, 2000)
 - → Impacts directs : ont lieu sur l'exploitation
 - → Impacts indirects : production et transport des entrants à la ferme

Identifie également les transferts d'impact entre catégories

Matériel et méthode

Assolement de 2 fermes de G.C. (CDER Marne = 458 EA/lot)

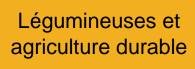
Légumineuses et agriculture durable

ALIMENTATION
AGRICULTURE
ENVIRONNEMENT

Matériel et méthode :

Assolement de 3 fermes d'élevage (réseaux ETRE & BIO Bretagne = 7 à 10 fermes par type identifié)

Type	SAU	S. Indirecte	SFP (ha)		Blé (ba)	% MS de
	(ha)	(ha)	Herbe	Maïs	(ha)	Légumineuses
Maïs-Herbe	54,4	14,1	27,6	18,9	7,9	3,2
Herbe -Lég.+	61,6	2,7	51,7	4,0	5,9	30
Herbe-Lég	61,6	2,7	51,7	4,0	5,9	10



Résultats : Fermes de grande culture

Taux de Légumineuses :		Changement Climatique (kg éq. CO ₂)	Energie Non Renouvelable (MJ)
Ferme (pondéré de l'assolement)	Bas (5%)	2337	16904
	Haut (20%)	2240	15997

Diminution de 4% des impacts sur le Changement Climatique, et de 5% d'énergie non-renouvelable = fermes 20% de Lég.

Exploitation = 16400 kg éq. CO₂ et 153500 MJ énerg. NR

Résultats : Fermes d'élevage

Diminution:

7% des impacts sur le Changement Climatique, et de 27% d'énergie non-renouvelable

Exploitation = 30200 kg éq. CO₂ et 316100 MJ énerg. NR

Conclusion

Assolement avec légumineuses = atout pour limiter les émissions de N₂O

En grande culture : insertion du pois > émissions

En ferme d'élevage : densité du trèfle sans effet sur le niveau d'émission

Apports d'azote **Effet majoritaire** sur les émissions

Conclusion

Actions de l'agriculteur pour limiter les émissions de GES

- Limiter les apports d'engrais N au strict nécessaire;
- Mettre en œuvre des techniques culturales limitant la lixiviation d'N (absorption par des C.I.);
- Limiter le nombre d'interventions consom. d'énergie NR.
- Sur prairie : réaliser une conduite raisonnée du pâturage (limiter le piétinement du sol par les animaux)

Conclusion

Introduction de légumineuses dans les rotations = *levier efficace de réduction des émissions de GES*

Fixation symbiotique constitue le seul levier que nous ayons pour accroître le taux d'azote dans les sols

Rôle environnemental indéniable Diversifient les paysages de nos campagnes Nécessaires à l'équilibre protéique de nos élevages

