

CYCLES DE VIE DES PRODUITS A BASE DE BOIS ET SEQUESTRATION DU CARBONE

Gérard DEROUBAIX, Estelle VIAL et Claire CORNILLIER

CIAG

Forêt–Bois : quelles ressources pour quels produits ? Nancy – 16 décembre 2011

Forêt, bois et changement climatique?

Puits de carbone, carbone biomasse, stockage de carbone,
Captation du CO2, séquestration du CO2, énergie grise, substitution, valorisation énergétique, empreinte carbone, marchés carbone,

Avantages climat du système forêt-bois?

Plan d'intervention

- Le carbone dans le cycle de vie des produits bois: définitions
- Bilans nationaux ou territoriaux des émissions de GES
- Empreinte carbone des produits et ACV
- Réduction des émissions de CO2 fossile par substitution

Le carbone dans le cycle de vie des produits bois: définitions

Cycle de vie d'un produit de construction bois

A chaque étape:

- différents scénarios possibles: forêt cultivée ou non, fin de vie en valorisation énergétique, recyclage matière ou élimination
 - captations, émissions ou stockage de composés du C

Le carbone dans le cycle de vie des produits bois: définitions CO2 fossile et CO2 biomasse

 La forêt capte le CO2 atmosphérique et le transforme en C

= CAPTATION

(Bilan net absorption-émissions positif = puit de carbone)

 La forêt et les produits de la forêt stockent le C ainsi capté (qui peut s'exprimer en équivalent CO2)

= STOCKAGE

Le carbone dans le cycle de vie des produits bois: définitions (suite)

- Sylviculture, exploitation forestière, transport du bois, fabrication des produits, transformation, utilisation et fin de vie de ces produits génèrent des émissions de GES (Gaz à Effet de Serre, principalement CO2) à base de C fossile
- La combustion du bois, ou sa bio-dégradation génèrent des émissions de GES à base de C biomasse

= EMISSIONS

Le carbone dans le cycle de vie des produits bois: définitions (suite)

 Les produits bois et le bois énergie génèrent moins d'émissions de CO2 fossile que les matériaux traditionnels qu'ils peuvent remplacer; la substitution de ces produits concurrents conduit donc à des économies d'émissions de GES

= SUBSTITUTION

Bilans nationaux ou territoriaux des émissions de GES

- Bilans périodiques au niveau du pays : KYOTO/UNFCCC : Bilans annuels
 - Inventaires des émissions et puits chaque année
 - Mesure du respect des engagements de réduction des émissions annuelles par rapport à une année de référence (532 Mt eqCO2 en 2007, -5,6% par rapport à 1990)
 - Loi du 13/08/2005, objectif de réduction des GES de 3% par an soit une division par 4 d'ici 2050
 - La Forêt est incluse dans ces comptes, mais les bénéfices en sont plafonnés, et les produits ne sont pas pris en compte, jusqu'à présent (mais la comptabilisation CCNUCC est possible à titre volontaire)

:

Bilans nationaux ou territoriaux des émissions de GES, suite

Forêt française = puits de CO2 important
 -78,2 MtCO2 en 2008 selon les règles de comptabilisation fixées par le protocole de Kyoto,
 constante progression (+80% de 1990 et 2007) :
 bénéfice plafonné à -3,2 Mt eqCO2 au titre de Kyoto

 2005: reporting volontaire UNFCCC sur les variations de stocks dans les <u>produits</u> de la forêt (étude FCBA pour le MAP): - 4,6 MtCO2, sur un stock de 344 Mt eqCO2.

Bilans nationaux ou territoriaux des émissions de GES: MARCHÉS CARBONE

Marchés réglementés :

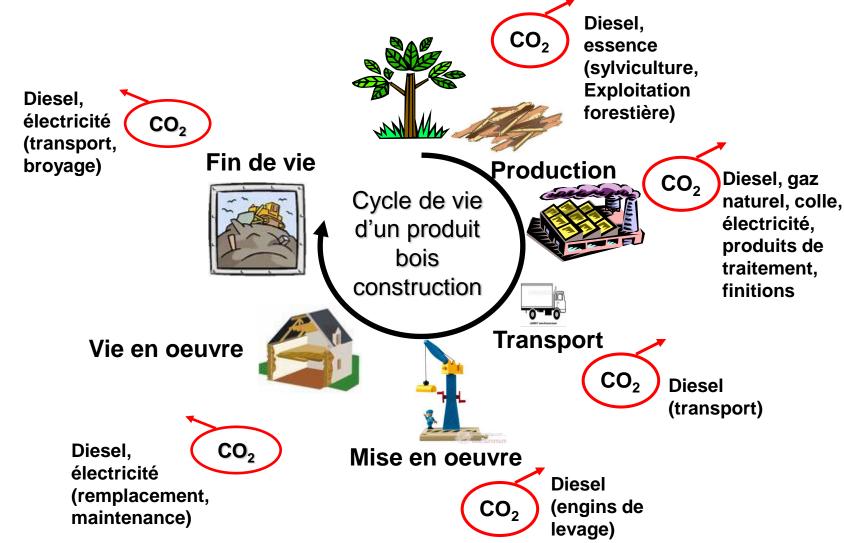
- Système d'échanges de quotas de l'UE : secteurs industriels les plus émissifs
- Autres secteurs (hors quotas): « projets domestiques »
- -> déclencher des investissements pour la réduction des émissions de GES en rétribuant le porteur de projet en fonction des réductions observées

Projet Carbone forestier : la comptabilisation annuelle doit démontrer l'effet puit obtenu

Marchés C volontaires : même système de comptabilisation (54 Mt CO2 échangés en 2008, à 7,35€/t)

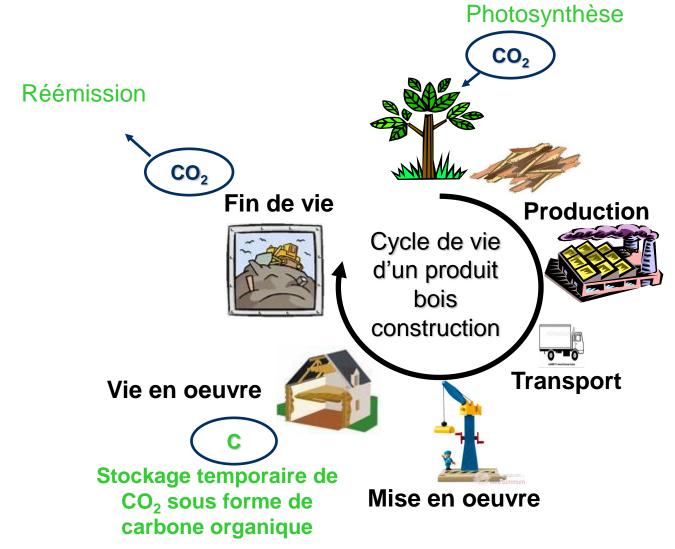
ISO 14064 : Cadre d'évaluation des bilans de GES

CIAG – Forêt – Bois : quelles ressources pour quels produits ? Nancy – 16 décembre 2011


Empreinte carbone des produits et Analyse de Cycle de Vie (ACV)

Approche par flux sur le cycle de vie du produit

Pas de notion de période d'analyse, sauf calcul de l'impact changement climatique sur 100 ans



Le cycle de vie d'un produit bois et le CO2 fossile

Le cycle de vie d'un produit bois et le C biomasse

L'analyse de cycle de vie traditionnelle

- Le calcul se fait sur l'ensemble du cycle de vie
 - Production: Sylviculture, exploitation forestière, transport, transformations,
 - Transport du produit
 - Mise en œuvre
 - Vie en œuvre
 - Fin de vie
- Le calcul se fait selon la comptabilisation en FLUX
 - GES d'origine fossile
 - GES d'origine biomasse (captation et émissions de CO₂, émissions de méthane)
- Le calcul ne prend pas en compte le stockage temporaire
 - Que le produit soit brûlé maintenant ou dans 50 ans, le bilan est le même.

Stockage du carbone par les produits bois

Rappel de quelques principes :

- Le CO2 qui n'est pas dans l'atmosphère ne participe pas à l'effet de serre
- Toute prolongation du stockage est bénéfique, dans le contexte de mutation actuelle
- Si la forêt est stable ou en croissance, les produits participent au puits de carbone en évitant l'émission immédiate de CO2 par la dégradation naturelle ou la combustion du bois

Contribution des produits bois à l'atténuation du changement climatique

- Les produits bois contribuent directement à l'atténuation du changement climatique car ils constituent un réservoir de carbone qui peut croître
 - Selon les lignes directrices du GIEC, les produits ligneux sont considérés comme un réservoir de carbone
 - Une augmentation de la production des produits dérivés du bois et/ou l'allongement de leur durée de vie permet d'augmenter la taille de ce réservoir
 - La gestion durable de la forêt garantit que l'augmentation du stock de carbone dans le réservoir « produits » ne se fait pas au détriment du réservoir « forêt »
 - Cette phase de croissance du réservoir correspond à une fonction de puits de carbone
- Les produits bois représentent un stock de carbone de 344 Mt eq. CO₂ en

France

Modélisation du stockage temporaire de carbone

Empreinte carbone =

Emissions de GES fossiles

- + Emissions de Méthane
- + Bénéfice du stockage

Bénéfice du stockage =

-1/100éme du C contenu par année de stockage

Exemple: 1 t de C stockée pendant 70 ans

= -70/100 t de C = -0.7 t de C

ACV et Empreinte carbone : les référentiels

Mise en œuvre et méthodologie:

- Affichage environnemental produits de grande consommation (BPX 30-323 plateforme ADEME-AFNOR)
- FDES produits de construction (NF P01-010, prEN 15804)
- Projet norme Internationale : ISO 14067

CEN TC 175: Round and sawn timber / Environmental Product Declaration / Product category rules for wood and wood based products

- defines the modelling and assessment of material specific characteristics such as carbon storage and energy content of wood
- includes the rules for calculating the Life Cycle Inventory and the Life Cycle Impact Assessment underlying the EPD, including the assessment of carbon and energy content of wood

ACV et Empreinte carbone : les référentiels

Les flux de C biomasse : pris en compte partout

Le stockage de C biomasse : 3 cas de figure

- •1er cas : <u>Le stockage temporaire du C est pris en compte</u> dans l'empreinte C:
 - -Affichage environnemental BPX 30 323, ADEME AFNOR : et adopté pour le référentiel Meubles Bois
 - Specification for the assessment of the life cycle greenhouse gas emissions of goods and services : UK, PAS 2050
- •2eme cas : <u>Le stockage temporaire du C peut être mentionné</u> <u>séparément</u> de l'empreinte C
 - -Future ISO 14067: Empreinte carbone des produits
 - Projet de document TC175 : Bois et CO2 ?
 - -FDES: Déclaration environnementale et sanitaire des produits de construction NF P01-010

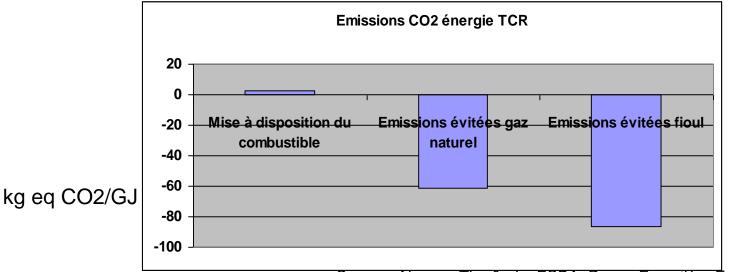
ACV et Empreinte carbone : les référentiels (suite)

- 3eme cas : <u>Le stockage de C n'est pas évoqué</u>
 - Projet de décret sur l'affichage environnemental des produits de construction
 - Projet de norme Européenne: Déclaration environnementale des produits de construction – Pr EN 15 804 : Attention, approche « berceau à la sortie de l'usine » = empreinte C négative
 - La norme EN 15804 fera l'objet d'un complément français qui pourrait préciser la question du stockage du C
 - ISO 14025: Marquages et déclarations environnementaux Déclarations environnementales de Type III

Conclusion : le bénéfice du stockage de C biomasse dans le bois peut être pris en compte dans l'empreinte C au prorata de la durée de vie des produits

Pour comparer ou pour évaluer tout le bénéfice des systèmes bois

A- Substitution d'énergies


L'énergie biomasse est-elle « Carbone neutre » ?

- -principe : le CO2 biomasse émis lors de la combustion est également capté par la forêt
- -Ceci est donc accepté sur la base d'une forêt d'origine renouvelée en production de biomasse
- -Au-delà de ce principe, le bois-énergie n'est pas tout à fait neutre en CO2 car il faut de l'énergie fossile pour:
 - »Cultiver, exploiter, broyer, transporter, éventuellement sécher...

Mais l'énergie biomasse se substitue à des énergies fossiles, notamment gaz naturel, fioul, charbon, fortement émettrices en CO2 fossile.

Exemple : émissions et gains liés à l'utilisation de TCRs

Source: Nguyen The & al., FCBA, Revue Forestière Française, 2010

L'atout « substitution d'énergie fossile » peut intervenir comme un bénéfice en fin de vie d'un produit bois, si ce produit peut être valorisé facilement en énergie

B- Substitution matériau:

substitution de produits générant plus d'émissions de CO2 fossile lors de leur production que les produits bois

-> Question plus complexe que celle de la substitution d'énergies

Les principes :

- On compare des produits à fonction égale
- On ne peut donc pas comparer des matériaux, il faut comparer des produits fabriqués à partir de matériaux différents
- Parfois même nécessaire de comparer
 le système dans lequel s'intègrent les produits :
 cas du bâtiment
- Coût énergétique de transformation du bois
 modéré + les entreprises disposent fréquemment de sources d'énergie biomasse : émissions de CO2 fossile de production des produits bois sont donc modérées.

Substitution matériau:

Les émissions de CO2 fossile de mise à disposition
 (matières premières, transformation, fabrication, transport) des produits à base de bois peuvent être, dans un certain nombre de cas, significativement inférieures à celles des produits à base de matériaux concurrents

Exemple sur base des FDES:

Emissions de la phase production:

- Menuiserie PVC: 63 kg eq CO2
- Menuiserie Bois : 40 kg eq CO2
 (et la différence est limitée par le poids C du vitrage)

23

Substitution matériau:

Attention:

- La différence n'est pas toujours significative et des comparaisons défavorables aux produits à base de bois peuvent être rencontrées
- Les filières des matériaux concurrents font beaucoup d'effort pour réduire leur empreinte C:
 - Aluminium, Acier, Matières plastiques : taux de recyclage en croissance, diversification des sources d'énergie
 - Béton : combustibles déchets en cimenterie, proximité des fabricants par rapport aux chantiers,
 - Brique : utilisation de combustibles biomasse
 - Perspectives de captation du CO2 à l'émission

Substitution ... suite

Substitution matériau:

L'industrie du bois doit donc se préoccuper d'améliorer également l'empreinte C de ses produits:

- Distances et modes d'approvisionnement
- Sources d'énergie pour le process, notamment pour le séchage
- Empreinte C des adjuvants et matériaux associés (ex : poids des colles dans les panneaux bois)
- Devenir des produits en fin de vie
- Durée de vie des produits

Conclusions

- Système forêt-bois : bénéfices climat incontestables, plus ou moins reconnus selon les approches de comptabilisation des émissions-captations de GES
- Pour faire progresser cette reconnaissance, il faut articuler ces différentes approches.
- Des perspectives existent pour une meilleure reconnaissance de la fonction de puits de carbone de la forêt ainsi que de celle des produits.

Conclusions

- Le bénéfice de <u>substitution énergétique</u> du bois énergie est bien établi, le potentiel de réduction des émissions par la <u>substitution matériau</u> est plus complexe à calculer
- L'industrie du bois doit poursuivre l'amélioration de l'empreinte carbone de ses produits pour tirer pleinement profit des bénéfices climat du matériau