

Phytomicronutriments:

Tour d'horizon et difficultés rencontrées pour établir des ANC Liens avec la réglementation des allégations santé

M J Amiot-Carlin, UMR INRA 1260, INSERM 1062, Aix-Marseille Université Nutrition, Obésité et Risque Thrombotique (NORT)

Mardi 16 décembre 2014

Phytomicronutriments : des substances bioactives non essentielles

Métabolites secondaires des végétaux

Grande diversité de structures

Pas d'apport nutritionnel conseillé (pas de carence associée à une pathologie)

Effet biologique de faible amplitude

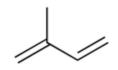
Actions dans les pathologie liées à l'âge

Principales classes de phytomicronutriments

- Terpénoïdes
 - √ Voie de l'isopentényl-diphosphate

- Composés phénoliques
 - ✓ Voie de l'acide shikimique et acétate/malonate

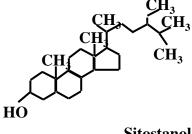
- Composés soufrés
 - √ Voie des Composés azotés



Terpénoïdes

Composés polymères dont l'unité de base est de 5 carbones

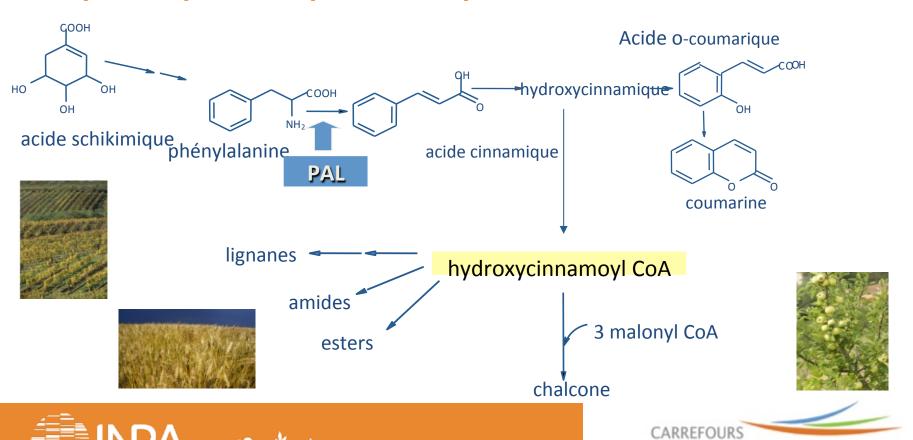
Nom	Nb unités 5C	Molécules
Monoterpènes	2 (C ₁₀ H ₁₆)	Limonène, menthol, vanilline
Sesquiterpènes	3 (C ₁₅ H ₂₄)	Farnésol
Diterpènes	4 (C ₂₀ H ₃₂)	Gibbérélines, acide carnosique
Triterpènes	6 (C ₃₀ H ₄₈)	Stérols
Tetraterpènes	8 (C ₄₀ H ₆₄)	Caroténoïdes
Polyterpènes	<8	Plastoquinones, ubiquinones

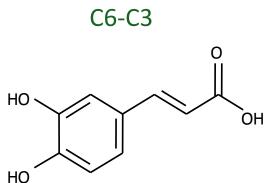


Terpénoïdes - Triterpènes - Phytostérols

$$\begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ \end{array}$$
 HO
$$\begin{array}{c} CH_3 \\ CH_3 \\ \end{array}$$

Terpénoïdes - Tétraterpènes - Caroténoïdes


	carotènes	xanthophylles
Provitaminique A	CH ₃ B-carotène	β-cryptoxanthine
Non Provitaminique A	lycopène	lutéine


Composés phénoliques - les précurseurs des flavonoïdes

DE L'INNOVATION AGRONOMIQUE

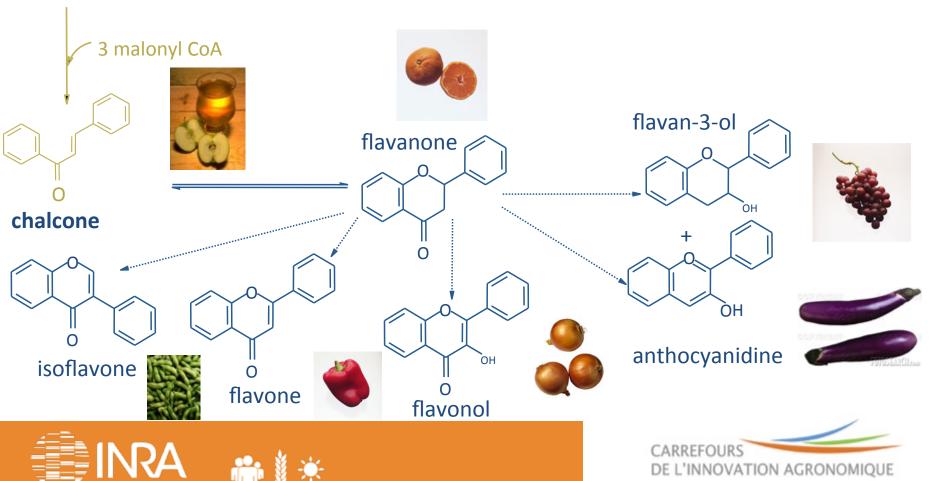
Composés phénoliques - Non-flavonoïdes

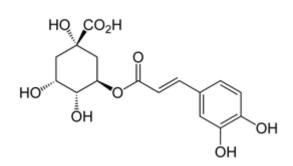
Acide gallique

Acide caféique

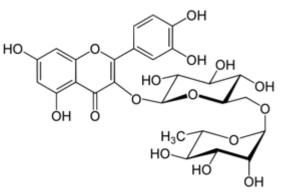
C6-C2-C6

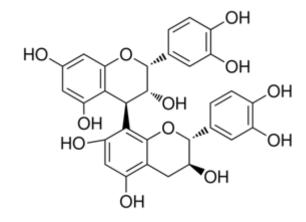
Resvératrol



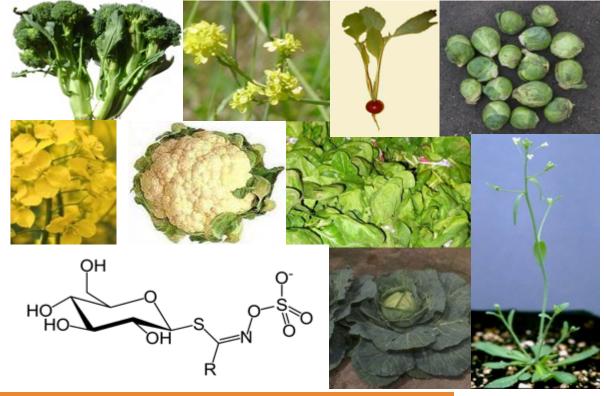


Composés phénoliques – Flavonoïdes

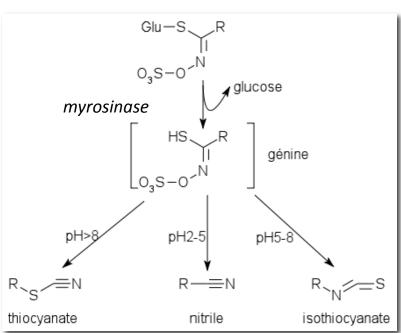



Composés phénoliques – esters, glycosides, polymères

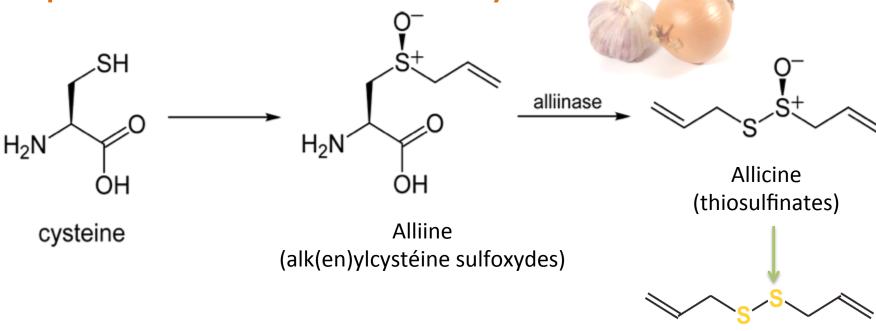
Acide chlorogénique


Procyanidine B2

Composés soufrés- glucosinolates (crucifères)



Composés soufrés- glucosinolates


Isothiocyanates	Glucosinolate précurseur	Sources alimentaires	
		allilleritalies	
ISOTHIOCYANATES			
Sulforaphane	glucoraphanine R= 4(méthylsulfinyle) butyle	Brocoli, choux de Bruxelles,	
Isothiocyanate de phénéthyle	gluconasturtiine R= 2-phényléthyle	raifort	
Isothiocyanate d'allyle	Sinigrine R= 2-propényle	choux , raifort,	
INDOLES			
Indole-3-carbinol	glucobrassicine	brocoli, moutarde, cresson	

Composés soufrés- sulfures d'allyle

disulfure de diallyle

Phytomicronutriments : une biodisponibilité faible

Micronutriments	Apport journalier mg	Concentrations plasmatiques
Vitamine C	110	60
lpha-tocophérol	12	35
Flavonoïdes	400	0,001 à 4 (selon les structures)
Caroténoïdes	6	0,2 à 2 (selon les structures)

Phytomicronutriments : une faible absorption et forte métabolisation

	estomac	duodenum	colon	absorption	plasma
Polyphénols	?	?	Important métabolisme Action de la microflore	0-50% (dépend des structures)	Concentrations faibles Pas de molécules parentes (sauf anthocyanines) Nombreux metabolites
Caroténoides	Transfert dans la phase lipidique	Hydrolyse des esters Transfert micellaire	Métabolisme Action de la microflore ?	Faiblement absorbés	Concentrations faibles Metabolites?
Phytostérols	?	Hydrolyse des esters	?	Faiblement absorbés Efflués dans lumère intestinale	Très faibles concentrations Metabolites ?
Organosulfurés Alliine	Transformés en sulfures d'allyle (liposolubles)			Alliine faiblement absorbée /allyle sulfides	Pas d'alliine Nombreux metabolites de sulfures d'allyle
Glucosinolates	Transformés avant l'estomac		Métabolisés en isothiocyanates	Glucosinolates faiblement absorbés	Métabolites (acides mercapturiques) Autres metabolites?

Aliments, boissons riches en phytomicronutriments et prévention de pathologies - études épidémiologiques

	Maladies cardio-vasculaires	Diabète	Phytomicronutriments
Café	modérée (caféiné et décafeiné)	modérée (caféiné et décafeiné)	polyphénols
Thé	2- 4 tasses/j		polyphénols (gallate d'épigallocatéchine)
Huile d'olive	3-4 c-à-s		Hydroxytyrosol et dérivés, lignanes
Fruits légumes	Fruits à pépins		Polyphénols
	Fruits légumes orange	Légumes à feuilles vertes	Caroténoides?

Phytomicronutriments : des actions biologiques diverses

antioxydante anti-inflammatoire

lutéine, lycopène, curcumine...

Action anti-microbiennne

Terpènes, polyphénols, sulfures d'allyle

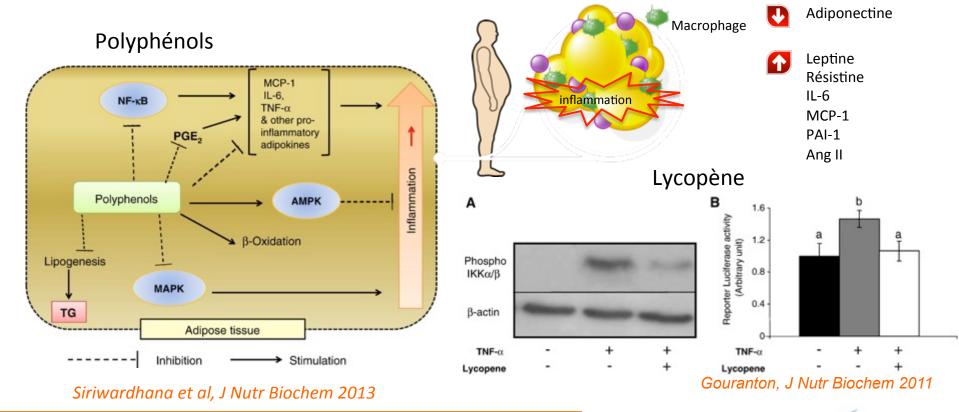
Action hormonale

isoflavones, lignanes, resvératrol

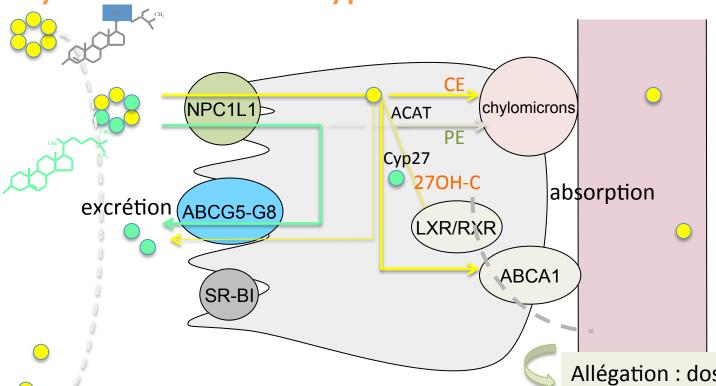
Modulation d'enzymes

Action physico-chimique

polyphénols, phytostérols


Isothiocyanates, indoles, flavones

Phytomicronutriments, tissu adipeux, inflammation

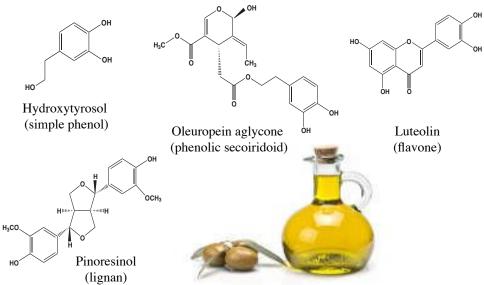


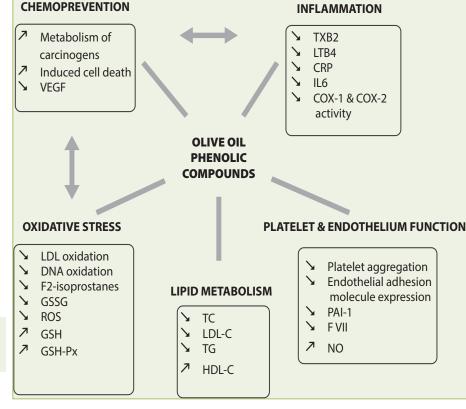
Phytostérols – effet hypocholestérémiant

- cholestérol
- phytostérol
- CE esters de cholestérol
- PE esters de phytostérol

Amiot et al, J Lip Res 2011, et Eur J Nutr, 2013 Brauner et al. J. Nutr. 2012

Allégation : dose quotidienne de 3 g


EFSA 2012;10(5):2693.



Polyphénols de l'huile d'olive

EFSA, 2011 Opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage Martin-Pelaez et al Mol Nutr Food Res. 2013

Phytomicronutriments et allégations - un chemin épineux

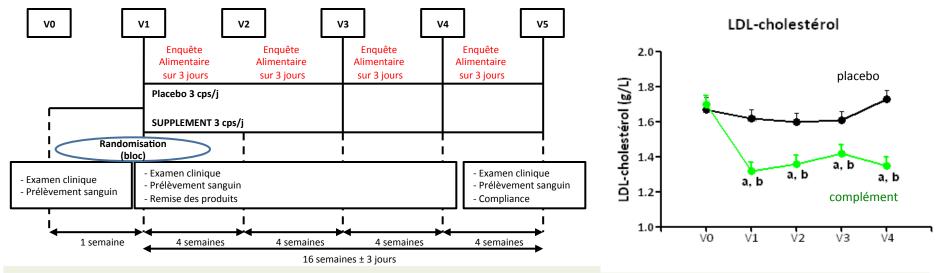
Peu d'allégations autorisées : Olive oil polyphenols, Water-Soluble Tomato Concentrate (WSTC) I and II, Plant sterol/stanoloesters (4)

Nutrition and claims 2012

Démarche : caractérisation de la substance et de l'effet, justification de l'allégation

études d'intervention chez l'homme groupe représentatif de la population cible Nombre d'études?

études chez l'animal seulement en appui


allégations possibles resteront purement « fonctionnelles »

Une nouvelle allégation sur l'effet d'un complément alimentaire sur la réduction du LDL-Cholestérol- combinaison de phytomicronutriments et diminution des doses

EFSA Journal 2013;11(7):3327 Scientific Opinion on the substantiation of a health claim related to the combination of artichoke leaf dry extract standardised in caffeoylquinic acids, monacolin K in red yeast rice, sugar-cane derived policosanols, OPC from French maritime pine bark, garlic dry extract standardised in allicin, d-α-tocopheryl hydrogen succinate, riboflavin and inositolhexanicotinate in Limicol® and reduction of blood LDL-cholesterol concentrations pursuant to Article 14 of Regulation (EC) No 1924/2006

Ogier N, Amiot MJ, Georgé S, Maillot M, et al Eur J Nutr. 2013 Mar;52(2):547-57

Nombreuses allégations non autorisées

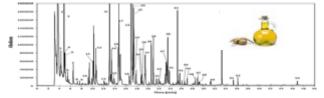
Isoflavones

Lutéine

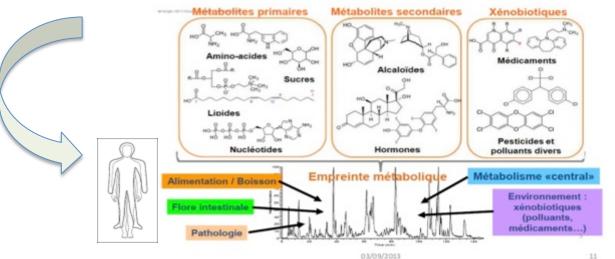
Lycopène

glucosinolates

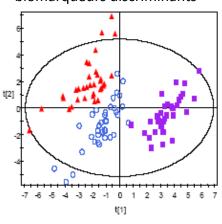
OPC raisin


Polyphénols fruits et thé

Phytomicronutriments – perspectives de recherche



Nouveaux outils d'étude



Complexité - aliment

Identification biomarqueurs discriminants

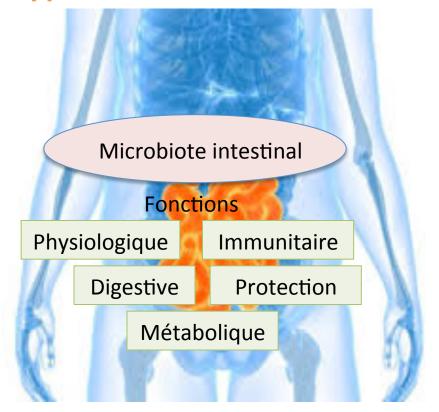
Exposition Effet Bénéfice-Risque

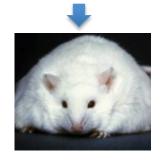
Polyphénols - des effets épigénétiques

Pathologie	Enzyme cible	Mécanisme	Polyphénols	Références
Inflammation	SIRT1 HDAC2	Activation Activation	resvératrol, catéchines, curcumine kaempférol	Choi 2009 Zhu 2011
Cancer	SIRT1 DNMT1	Inhibition	EGCG, génistéine	Kikuno 2008 Choi 2009
Adipogenèse	SIRT1	Activation	resvératrol silibinine	Tseng 2011
Vieillissement et restriction calorique	SIRT1,2	Activation	resvératrol quercétine, procyanidines	Mukherjee 2010

Ayissi et al Mol. Nutr. Food Res. 2014

DE L'INNOVATION AGRONOMIQUE


CARREFOURS

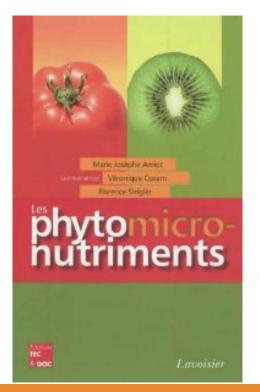


Polyphénols - des effets sur le microbiote

Extrait de canneberge

Amélioration de l'équilibre énergétique, le métabolisme du glucose et l'état inflammatoire

Akkermansia muciniphila


Anhê FF, et al. Gut 2014

Pour en savoir plus

Les phytomicronutriments
Amiot MJ, Coxam C, Strigler F
(Tec et Doc, 2012)
soutenu par le Fonds Français pour l'Alimentation et la Santé (FFAS)

