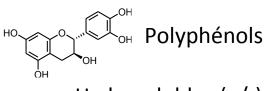
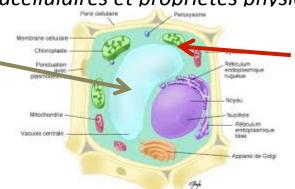


Le devenir des polyphénols et caroténoïdes dans les fruits et légumes traités thermiquement

C. Renard, C. Caris-Veyrat, C. Dufour & C. Le Bourvellec

UMR408 Sécurité et Qualité des Produits d'Origine Végétale, Avignon




Pourquoi les caroténoides et les polyphénols?

Les métabolites secondaires les plus ubiquitaires et les plus étudiés Propriétés antioxydantes, effets santé Impact sur la couleur: pigments et brunissement enzymatique

Structures, localisations intracellulaires et propriétés physico-chimiques sont très différentes!

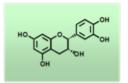
Hydrosolubles (+/-)
Glycosylés

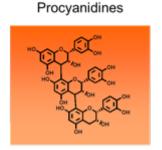
Caroténoïdes

Liposolubles Complexes protéiques

Les principaux acteurs

Quelques polyphénols


Flavanones


Hydroxycinnamiques

Acides

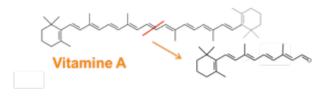
Dihydrochalcones

Flavan-3-ols monomères

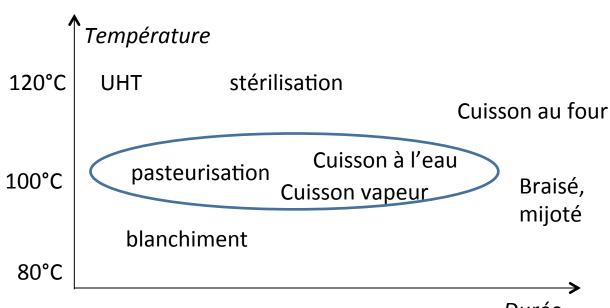
Flavan-3-ols polymères:

Flavonols Anthocyanes

Les principaux caroténoïdes



Quels traitements thermiques? Pour quoi faire?


Cuisson: appétence, texture, digestibilité

Stabilisation:

-Inactivation du métabolisme endogène

-Elimination des

microorganismes

Procédés thermo-mécaniques

Production de jus, coulis, purées....

Allient l'élimination des parties ligneuses (raffinage) et la cuisson / stabilisation

Elimination des caroténoïdes et polyphénols des épidermes, pépins...

Que sait-on de leur stabilité à chaud?

Possibilité de dégradations enzymatiques (jusqu'à 60-70°C)

Caroténoides:

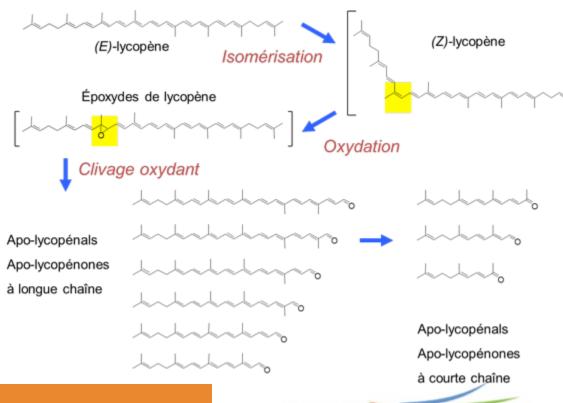
isomérisation

oxydation qui peut conduire à la rupture des molécules

Polyphénols:

oxydation

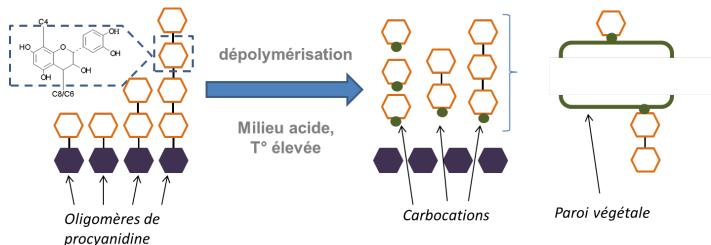
dépolymérisation des procyanidines en milieu acide à chaud, avec création d'espèces réactives



Dégradation des caroténoïdes

Oxydation et rupture de chaînes

Les produits de dégradation peuvent aussi avoir des propriétés d'intérêt

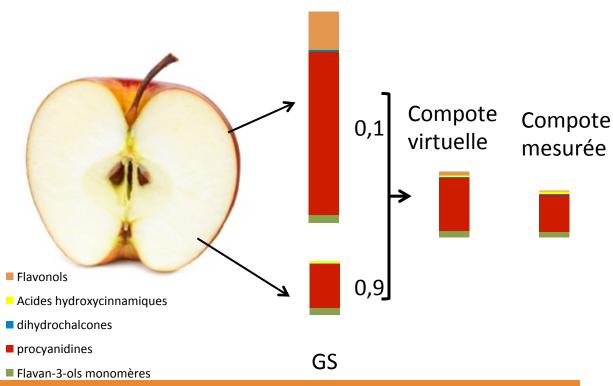


Dégradation des polyphénols

Oxydation

Dépolymérisation des procyanidines en milieu acide à chaud:

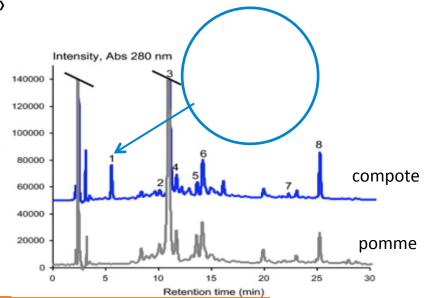
Le produit de réaction peut réagir avec les (macro)molécules du milieu



Les effets du raffinage

La composition phénolique de la compote reflète celle de la chair

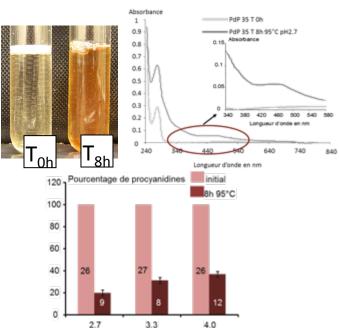
Peu de transfert des flavonols, qui sont les polyphénols caractéristiques de la peau



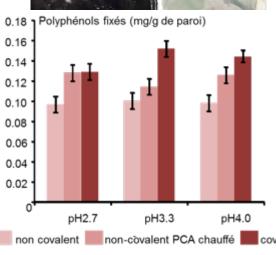
Des modifications chimiques?

Sur ce procédé compote, il y a surtout un effet « physique » lié à l'élimination des épidermes et pépins

Cependant apparition d'un polyphénol oxydé spécifique « POPi »

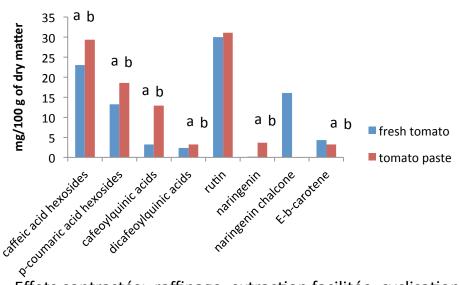

Formation de complexes et adduits

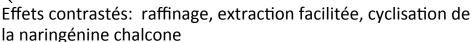
Obtention d'une coloration rosée des poires

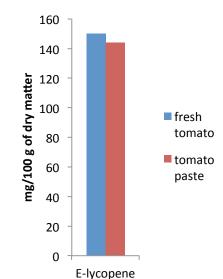

Qui s'accompagne d'une diminution des tannins

Chauffage des tannins de poire

Formation d'adduits colorés





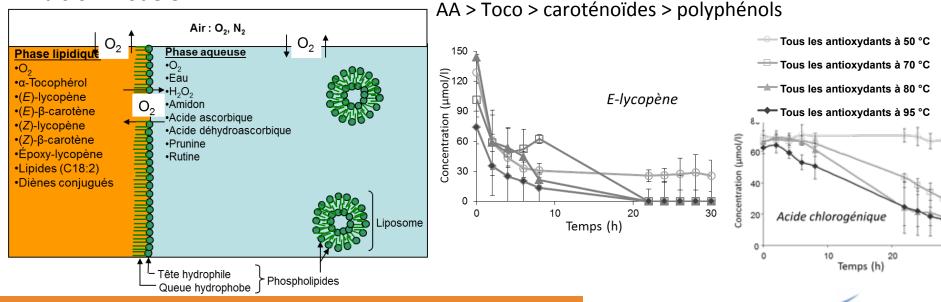


Et les caroténoïdes?

Fabrication industrielle de concentré de tomate

Pas de perte de lycopène, légères pour β-carotène

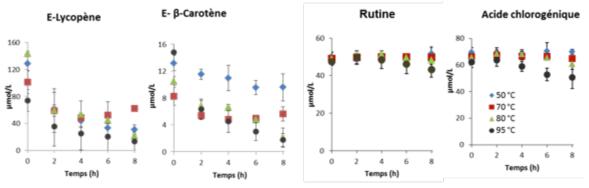
Compromis entre isomérisation et extraction facilitée

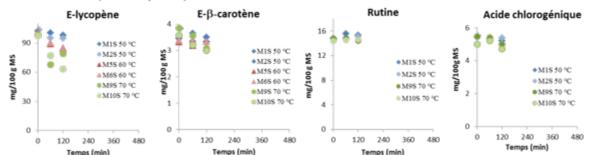


Comparaison solution modèle / matrice alimentaire

La dégradation des phytomicronutriments est obtenue pour des durées >> procédés

Emulsion modèle




Et pour des temps / températures comparables?

Les cinétiques obtenues et l'effet de la température sont très proches

Sauce tomate (échelle pilote)

MAIS

Les durées sont courtes dans les transformations industrielles

Conclusions

Polyphénols et caroténoïdes sont relativement peu affectés par les traitements thermiques courants

Durées courtes par rapport à leurs cinétiques de dégradation

Molécules « martyres » comme vitamine C

Peu d'oxygène dissous, surtout aux hautes températures

Importance de phénomènes « physiques » plus que chimiques

Pertes lors du parage et raffinage

Pertes par diffusion?

Déstructuration de la matrice végétale: 7 bioaccessibilité

Ne pas négliger les enzymes!

Merci pour votre attention!

Et merci à:

Line Touloumet Michèle Loonis Michel Carail Sylvaine Régis Céline Chanforan Mélodie Gil Dimitra Chormova Karima Bouzerzour

Stéphane Georgé Yves Plé

Xuanmi Meyer Cédric Brandam Marie Roland

