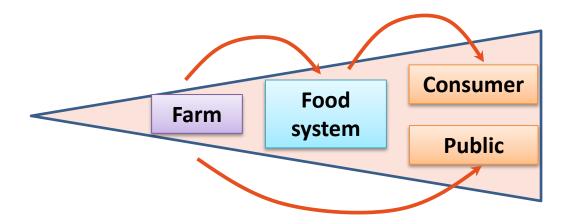

Perspective socio-économique des politiques publiques encourageant usage raisonné des antibiotiques en élevage

Guillaume Lhermie – Didier Raboisson | 27 juin 2019 | PARIS


Risk assessment

- Hazard
 - Resistant bacteria
- Risk of treatment failure
 - Release
 - Exposure
 - Consequence

Carrefours de l'innovation agronomique

AMR – Risk – Cost

- What we know
 - Cases studies
 - Transmission Animal to humans
 - Transmission humans to animals
 - Impact of AMU in agriculture on AMR

RATIONALE FOR THE PUBLIC POLICIES

Journal of Antimicrobial Chemotherapy Adva	nice Access published December 29, 2011
	Journal of
Anternizati Chemistrier	Antimicro
warnovo chernover bi10.1093/joc/dr541	Chemothe

Non-ST131 Escherichia coli from cattle harbouring human-like bla_{CTX-M-15}-carrying plasmids

Jeen-Nes Nedec², Leaent Peirel², Stalia Seed, Annee Gougander³, Daphne Sirkh², Patrice Nedmans² and Marina Hamp² Journal of Antimicrobial Chemotherapy (2008) 61, 1229–1233 doi:10.1092/jac/dkn131 Advance Access publication 26 March 2008

J Antimicrob Chemother 2012 doi:10.1093/jac/dks108 Advance Access publication 27 March 2012

Escherichia coli producing VIM-1 carbapenemase isolated on a pig farm

Jennie Fischer¹, Irene Rodriguez¹, Silvia Schmoger¹, Anika Friese², Uwe Roesler², Reiner Helmuth¹ and Beatriz Guerra^{1*}

JAC

Multilocus sequence typing of IncI1 plasmids carrying extended-spectrum β-lactamases in *Escherichia coli* and *Salmonella* of human and animal origin

Aurora García-Fernández¹, Giuseppina Chiaretto², Alessia Bertini¹, Laura Villa¹, Daniela Fortini¹, Antonia Ricci² and Alessandra Carattoli¹*

Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: a systematic review and meta-analysis

Karen I. Tang, Niamh P. Caffrey, Diego B. Nobrego, Susan C. Cook, Paul E. Ronksley, Herman W. Baokema, Alicia J. Polachel, Heather Gamhorn, Nahan Sharma, James D. Kellner, Williom A. Ghali

oa

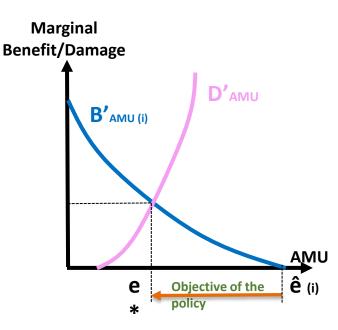
AMR – Risk – Cost

- What we don't know
 - Quantitative contribution
 - Thresholds
 - Costs in animal health

- What we estimate
 - Costs in public health
 - Additional diagnostic/treatments
 - Longer hospital stay, time off work
 - Increased likelihood of death
 - \$[2-17] par AM course treatment
 - \$20,000 for MRSA BSI
 - \$7 billion per year for community MRSA

Naylor et al, ARIC, 2018

Shrestha et al, ARIC, 2018


2016

Michaelidis et al, BMC Inf Dis,

RISKS AND COSTS ARE NOT FOR THE PRODUCERS BUT THE PUBLIC POLICIES TARGET AMU AT THE FARM

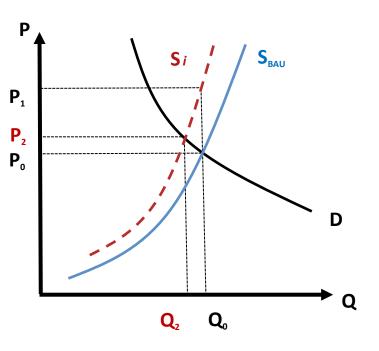
Public policies to curb AMR

- Regulatory instruments
 - AM bans
 - Standards
- Voluntary instruments
 - Economic incentives (taxes and permits)
 - Agreements
 - Industry self-regulation

Regulations

- Regulator specifies the objective
- Highly effective (if control)
- Generally more costly

- Ban of growth promoters
- 50% reduction target
 of AMU in farms animals
 in the Netherlands
- Specific requirements for the use of CIA in France


Taxes

- Producers choose their levels of inputs to production
- Challenges
 - Cost of the AMR
 externality necessary
 to set optimal tax
 - Inelastic demand
 - Imperfect information

 Differential taxes on AM sales in Denmark

Effects of potential taxes in the U.S.

- Objective: assessing the impact of policy reducing AMU
- Milk market
 - Constant elasticities Ed = 0.65 Es= 0.89
 - BAU values: average 2012-2016
 - Milk production
 - Milk price
 - Production costs
- Policy impacts
 - Increase of marginal production costs
 - Estimated from a farm model

The farm cost of decreasing antimicrobial use in dairy production

Guillaume Lhormie¹⁺, Lonan William Tauer², Yrjo Tapio Grober

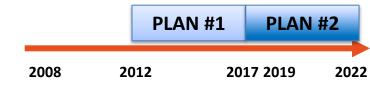
An assessment of the recotonic costs to the U.S. doiny marker of antimicrobial use restrictions Outlance Unreate¹¹, Lores Wilking Tame², Vin Tame Grides¹

Effects of potential taxes in the U.S

- Changes in prices and quantities
- Changes in consumers and producers surplus

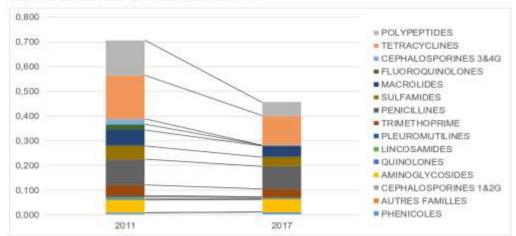
Scenario	BAU	Tax X 1.5	Tax X 2	Tax X 3	Tax X 4	Tax X 5	Prohibition
Equilibrium	0.422	0.422	0 424	0 424	0 425	0.426	0.425
milk price (\$/kg)	0.423	0.423	0.424	0.424	0.425	0.426	0.425
Δ PS (million \$)	-	-5.23	-10.45	-20.87	-31.27	-41.65	-38.22
Δ PS (% of initial value)	-	-0.03	-0.06	-0.11	-0.17	-0.22	-0.21
Δ CS (million \$)	-	-31.71	-63.38	-126.63	-189.73	-252.70	-231.92

Voluntary agreements


- Initiatives from companies, and non-profit organizations
- Not legally binding

Plan Ecoantibio

- Quantitative objectives : 25% AMU in 5 years
- Qualitative objectives : HP-CIA (fluoroquinolones, cephalosporins)


Results

Anses, 2018

- Between 2011-2017
 - Total exposure 38.9%
 - 3rd 4th g cephalosporins -94,7 %
 - Fluoroquinolones -88,1 %
- High discrepancies between species
 - - 23 % in cattle
 - - 43 % in pig
 - - 49 % poultry

- ALEA: indicator of animal exposure
 - kg treated/kg at risk

Figure 3 : Comparaison de l'ALEA en 2011 et 2017

Remaining questions

- How the results were achieved
- By which category of farmer

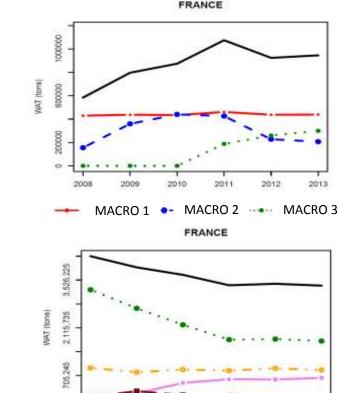
- At which costs
- For whom

Pharmaceutical system – agro-food chain

- Institutional influences
- systemic consequences
 - Pharmaceutical companies
 - Veterinarians
 - Food chain

Influence of veterinarians

- Objective: Identifying veterinarians' influence
 - Rationale: conflict of interests
 - Substitution between AM in the veterinarian's interest?
 - Cattle production

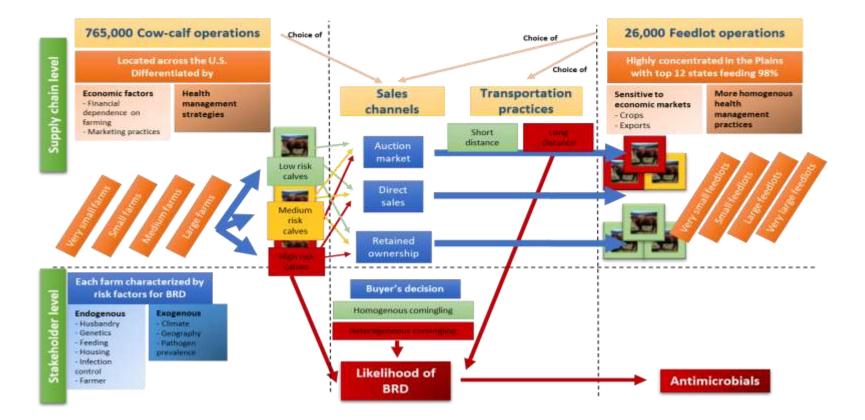

- Available data
 - Regional AM sales data 2008-2013
 - Animal populations

Working paper:

How veterinarians influence use patterns of antimicrobials? A spatial-temporal analysis of the prescribing-delivery complex in cattle. G. Lhermie, Y. Grohn, P. Sans, D. Raboisson.

Substitution between drugs with similar indications

- BRD treatments
 - Veterinarians do substitute
 - Technical equivalence
 - Without increasing AMU


2011

2012

2013

F1d

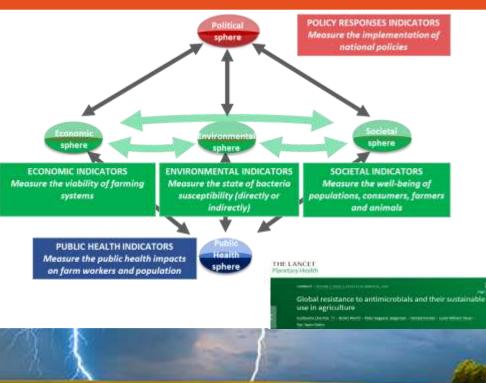
Public policies in the U.S. beef system

Expected effects of policies

- Regulations
 - Effective, with high costs
- Taxes
 - Probably poorly effective
 - Inelastic demand
 - Hobby farming
- Voluntary agreements
 - Need transparency of information

Working paper: Antimicrobial policies in beef production: choosing the right instruments to reduce antimicrobial use and resistance under structural and market constraints

G. Lhermie, L. Verteramo Chiu, K. Kaniyamattam, L. Tauer, Harvey M. Scott, Y. Gröhn



Conclusion

- A risk unfortunately poorly quantified
- Costs and benefits of public policies remain to be studied
 - Even if several approaches are successful
- No innovation in the instruments
 - Be innovative in their implementation

Contact: Guillaume Lhermie: g.lhermie@envt.fr Didier Raboisson: d.raboisson@envt.fr

https://epidec.weebly.com/