

CIAG - La réduction des GES dans l'industrie agro-alimentaire

Animation : Sébastien Curet (Oniris Vetagro Bio)

Témoignage : Hugo Bonzano (OID Consultants)

Présentation OID Consultants

DEPUIS 15 ANS

Accompagner l'amélioration de la performance environnementale des industriels

- Indépendant
- Proximité
- Simplificateur
- Partage des connaissances
- Créateur de la méthode du Diag Eco Flux et formateur
- Animateur du REF (Réseau des experts flux)

Consultants

OPTIMISATION ET INNOVATION DURABLES

Hugo Bonzano Consultant et responsable data, comptage et domotique auditeur Formateur stratégie environnementale en industrie depuis 7 ans

27 personnes

De nombreuses références dans des projets de gestion des déchets et des plus de 1500 énergies : sites accompagnés

hugo.bonzano@oid-consultants.com 06 77 50 11 31

Flux énergétiques

Flux

Impacts matières environnementaux

Accompagnement

Dispositifs d'aide Assistance à Maîtrise d'Ouvrage Optimisation des contrats Sobriété énergétique Veille réglementaire

Audit

Audit spécifique Étude thermique de bâtiments Diagnostic énergétique complet Audit énergétique obligatoire Campagne de détection

Pilotage

Audit interne Campagne de mesure Revue énergétique adaptée Industrie connectée Norme ISO 50 001

Gestion des déchets

Étude des gisements Réemploi et valorisation Conseils sur les coûts de gestion Sensibilisation du personnel Campagne de pesée

Économie circulaire

Relations avec le territoire Stratégie d'économie circulaire Réduction gaspillage alimentaire Symbiose industrielle Gestion de l'eau

Réduction à la source

Identification de pistes Audit déchets et matières Assistance à Maîtrise d'Ouvrage Coût complet des déchets Étude MFCA: ISO 14 051

Stratégie RSE

Norme ISO 26 000 Vulnérabilités et opportunités Conseils sur la stratégie Certifications et labels

Transition bas carbone

Mobilité personnes et matières Achats et produits responsables Stratégie climat ACT

Évaluation d'impacts

Analyse de cycle de vie Méthodologie Bilan Carbone Étude d'impacts multicritère Solutions de compensation Solutions de réduction

Méthodologie de comptabilité carbone

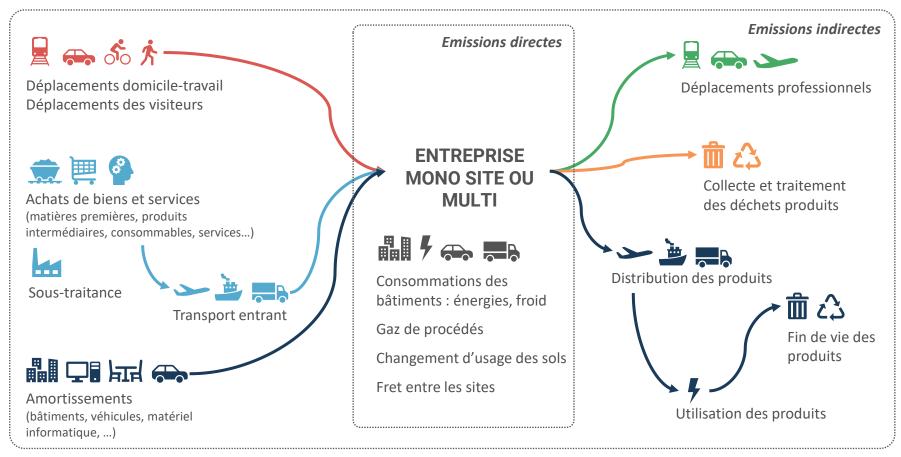
Méthodologie de calcul d'impact carbone

Émissions de GES = Donnée d'activité * Facteur d'émission

Émissions de GES d'un intrant = kg d'aliment consommé * kgCO₂e/kg d'aliment = Litres d'aliment * kgCO₂e/L

Émissions de GES énergie d'une industrie = kWh électricité * kgCO₂e/kWh d'électricité = kWh gaz * kgCO₂e/kWh gaz

Émissions de GES achat emballages = nombre d'emballages achetés * kgCO₂e/article = k€ dépensés * kgCO₂e/k€


Les incertitudes se cumulent elles aussi, et proviennent aussi bien des facteurs d'émission que des données étudiées.

Une étude précise va chercher à améliorer la fiabilité du calcul des émissions en évitant notamment les données monétaires.

L'incertitude globale d'un Bilan Carbone® peut rapidement être de 20%.

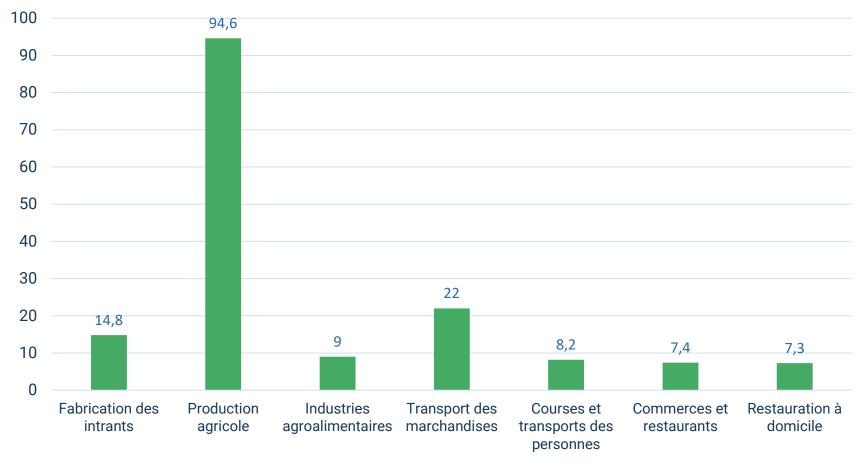
Périmètre d'étude

Visuel issu du Diag Décarbon'Action de Bpifrance

Bilan type de GES en IAA

Bilan type d'une répartition des émissions de GES en industrie agroalimentaire

Leviers et freins pour une trajectoire vers la neutralité carbone dans l'IAA



Divers leviers et freins

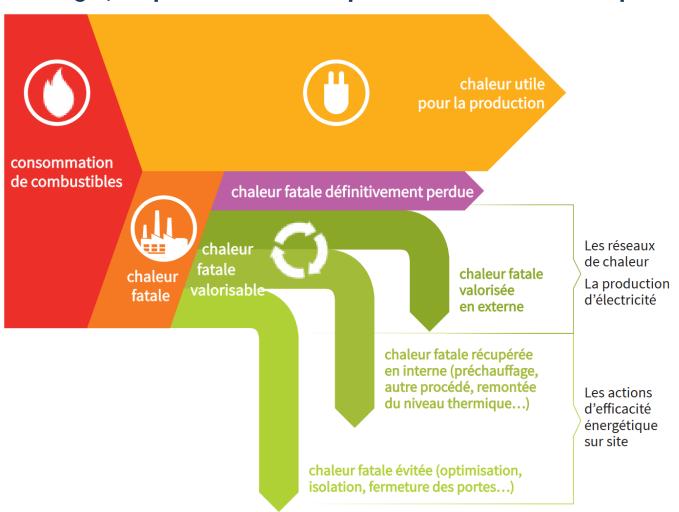
Répartition des émissions de CO₂e dans le secteur de l'alimentation (en Mt eqCO₂)

Les leviers de réduction portent sur les émissions directes et indirectes

Emissions directes:

- Réduire le gaspillage alimentaire
- Valoriser la chaleur fatale industrielle

Emissions indirectes:


- Raccourcir les chaînes logistiques → repenser la distribution alimentaire
- Réduire le gaspillage alimentaire
- Repenser les emballages → silos, réduction de masse emballage, recyclé, réutilisable
- Identifier les matières premières les moins impactantes

La chaleur fatale

La chaleur fatale est la chaleur générée par un procédé dont l'objectif premier n'est pas la production d'énergie, et qui de ce fait n'est pas nécessairement récupérée.

Les questions qui doivent être posées :

Qu'est qu'on fait de cette chaleur récupérée ? Avons-nous un besoin process (cas idéal) ou de chauffage ?

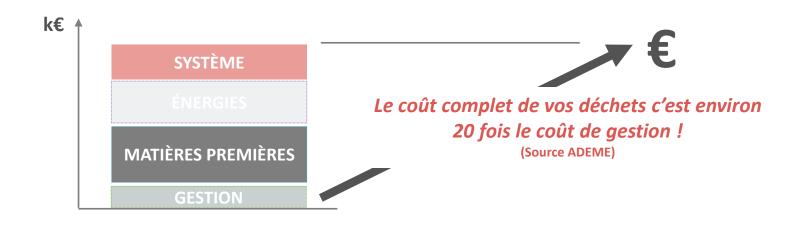
Quelle est la température ? Est-elle suffisante pour une utilisation directe ou servira-t-elle uniquement en préchauffage ?

Est-ce que le besoin est compatible au gisement (saisonnalité, localisation)?

Quels systèmes d'innovations nécessaires pour mettre en place cette trajectoire

Quelques systèmes d'innovations

Les systèmes d'innovations énoncés impliquent une stratégie bas carbone de l'industrie :


Les leviers directs adaptés au IAA :

- Réduire les pertes de matière in MFCA
- Décarboner l'énergie par des technologies de rupture : biomasse, IR, micro-onde, etc.
- Effacement électrique

La méthode MFCA

La méthode MFCA est une méthode de quantification des pertes matières, aussi appelée coût complet des déchets :

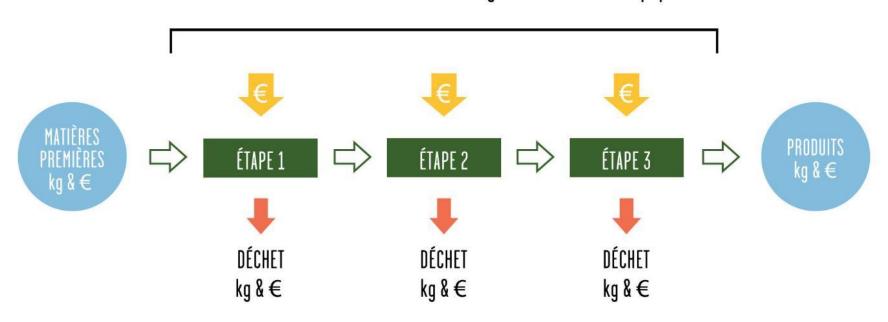
Une méthode en trois étapes :

Caractérisation de toutes les pertes matières (cause, quantité, lieu dans le process)

Calcul du coût complet des déchets (coût de gestion du déchet + coût énergétique de la perte matière + coût de la main d'œuvre qui a travaillé dessus + coût d'achat de la matière)

Plan d'action d'amélioration du taux de pertes avec chiffrage en utilisant la méthode du coût complet

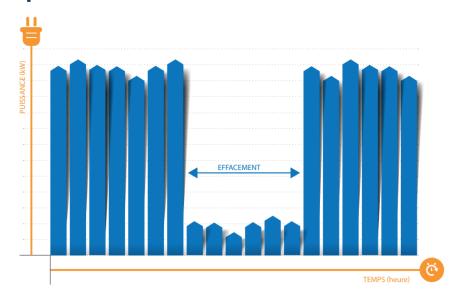
Cette méthode est normée par l'ISO 14051.



La méthode MFCA

Un exemple simplifié de MFCA:

CALCUL DU COÛT DES PERTES MATIÈRES


Coûts de transformation de la matière : énergie, main d'oeuvre, équipements

Effacement énergétique

La réduction des émissions de GES par l'effacement est indirecte et dépendante du réseau électrique européen :

En France, la consommation d'électricité est thermosensible. Si la température baisse de 1°C en hiver, les besoins de puissance augmentent de 2,4 GW

Pourquoi?

Impact carbone Rétribution financière

Quand?

En période de tension sur le réseau : l'hiver, en journée et en semaine de 0 à 30h/an

Comment?

Par sollicitation ou automatiquement selon le choix (on est toujours prévenu à l'avance)

Limites?

Pénalités si l'on refuse de s'effacer Organisation de la production

Ouverture : quel effacement estival intéressant et possible ?

OPTIMISATION ET INNOVATION DURABLES